Preview

Economics and Management

Advanced search

Agent-based Model for Monitoring and Management of Large Projects

Abstract

Aim. This study aims to substantiate the necessity of using an agent-based model (ABM) during the implementation of large projects, which would enable an assessment of the consequences of unscrupulous performance of duties on the part of project participants. Tasks. This study analyzes both the efficiency of the agent-based approach in simulating socioeconomic processes and step-by-step simulation of ABM processes, as well as identifies the basic features of agent types. Methods. The research is based on the developed model of a general balance of the Russian socioeconomic system ( CGE -model). This study is a logical extension of research based on the application of an agent-based approach to simulations, which involves shifting the focus from the macro level to the level of independent economic actors, i.e., agents. Results. This study shows the application of an agent-based approach to the simulation of large project implementation processes, where companies involved in the project and their employees are independent actors (agents) capable of active action according to their preferences. For instance, human agents in the model can change jobs and/or places of residence and company agents can develop partnerships for performing certain stages of work on the simulated projects. Human agents contribute to the performance of company agents according to their labor potential but can also act unscrupulously and so can company agents, if managed by such employee agents. Thus, the model simulates the behavior of agents engaged in illegal financial transactions. As a result, some portion of the funds allocated for the work is not involved in production and the project’s goals are not achieved. The probability of such agent behavior depends on the general level of decency, which is a controlled parameter of the model. The model also simulates population dynamics.

About the Authors

Valeriy L. Makarov
Central Economics and Mathematics Institute of RAS
Russian Federation


Al’bert R. Bakhtizin
Central Economics and Mathematics Institute of RAS
Russian Federation


Elena D. Sushko
Central Economics and Mathematics Institute of RAS
Russian Federation


References

1. Работа выполнена при финансовой поддержке Российского гуманитарного научного фонда (грант № 15-02-00276 «Разработка агент-ориентированной модели системы государственного управления в России»)

2. Макаров В. Л., Бахтизин А. Р., Сушко Е. Д., Бурилина М. А. Разработка математической модели для количественной оценки последствий незаконных финансовых операций // Управленческое консультирование. 2016. № 3. С. 85-95.

3. Bloomquist K. M. A Comparison of Agent-Based Models of Income Tax Evasion // Social Science Computer Review. 2006. N 4. p. 411-425.

4. Luna F., Stefansson B., eds. Economic simulations in Swarm: Agent-based modelling and object oriented programming. Amsterdam: Kluwer Academic Publ., 2000. 291 p.

5. Davis J. S., Hecht G., Perkins J. D. Social Behaviors, Enforcement and Tax Compliance Dynamics // Accounting Rev. 2003. N 78. p. 39-69.

6. Korobow A., Johnson C., Axtell R. An Agent-Based Model of Tax Compliance with Social Networks // National Tax Journal. 2007. Vol. 60, N 3, p. 589-610.

7. Situngkir H., Khanafiah D. Theorizing Corruption through Agent-Based Modeling // Advances in Intelligent Systems Research. 2006. doi:10.2991/jcis.2006.183.

8. Rennard J.-P. Handbook of Research on Nature-Inspired Computing for Economics and Management, Hershey, PA: Idea Group Reference, 2006. 989 p.

9. Бахметова Г. Ш. Методы демографического прогнозирования. М.: Финансы и статистика, 1982. 159 с.

10. Шахотько Л. П., Терещенко С. М. Компьютерное решение задачи построения демографических прогнозов // Вопросы статистики. 1999. № 10. С. 57-65.

11. Multimethod Simulation Software AnyLogic: [Электронный ресурс]. Режим доступа: http://www.anylogic.com/.

12. Макаров В. Л., Бахтизин А. Р., Сушко Е. Д. Ситуационное моделирование - эффективный инструмент для стратегического планирования и управления // Управленческое консультирование. 2016. № 6. С. 26-39.


Review

For citations:


Makarov V.L., Bakhtizin A.R., Sushko E.D. Agent-based Model for Monitoring and Management of Large Projects. Economics and Management. 2017;(4):4-12. (In Russ.)

Views: 276


ISSN 1998-1627 (Print)