Preview

Economics and Management

Advanced search

A Methodological Approach to Identifying the Optimal Market Behavior Strategy Based on Fuzzy Game Modeling

https://doi.org/10.35854/1998-1627-2020-10-1148-1157

Abstract

The presented study models market behavior strategies for firms in real (“impure”) markets.

Aim. The presented study aims to develop tools for optimizing (according to the criterion of profit maximization) the market behavior of firms based on the achievements of modern mathematics.

Tasks. The authors describe theoretical approaches to modeling the behavior of firms; define the problem of modeling the market behavior of firms in the language of game theory; modify the game model by implementing elements of the theory of fuzzy logic and fuzzy sets; develop and test a methodological approach to identifying the optimal behavior of firms based on fuzzy game modeling.

Methods. This study uses general methods of economic and mathematical modeling, provisions of neoclassical and institutional firm theory, tools of game theory and the theory of fuzzy logic and fuzzy sets.

Results. The optimal market behavior strategy for firms selling the same product is determined. The implementation of this strategy focuses on maximizing profits with allowance for the imperfections of real markets. A rigorous solution to this problem is proposed, based on the provisions of game theory, theory of fuzzy sets and fuzzy logic. The developed methodological approach to identifying the optimal market behavior strategy based on fuzzy game modeling is illustrated by a meaningful example.

Conclusions. The developed and tested methodological approach to identifying the optimal market behavior strategy based on fuzzy game modeling described in the article allows firms to search for optimal strategies with allowance for the imperfections of real markets. It can be used for theoretical modeling of the behavior of firms in an “impure” market, including in a mixed economy, where the government has a certain degree of planning and administrative influence on economic processes. The proposed approach can be recommended for use by the management of firms in the development and implementation of competitive strategies.

About the Authors

V. B. Vilkov
Military Academy of Logistics Named after Army General A.V. Khruleva
Russian Federation

Valeriy B. Vilkov - Ph.D. in Physical and Mathematical Sciences, Associate Professor, Associate Professor of the Department of General Scientific and Technical Disciplines

1, Suvorovskaya Str., Petergof, St. Petersburg, 198504, Russia



V. A. Plotnikov
St. Petersburg State University of Economics; St. Petersburg University of Management Technologies and Economics
Russian Federation

Vladimir A. Plotnikov - D.Sci., Ph.D. in Economics, Professor, Professor of the Department of General Economic Theory and the History of Economic Thought; Professor of the Department of Management, State and Municipal Administration

21, Sadovaya Str., St. Petersburg, 191023, Russia

Lermontovskiy Ave 44/A, St. Petersburg, 190103, Russia



P. V. Plotnikov
The Bonch-Bruevich Saint-Petersburg State University of Telecommunications
Russian Federation

Pavel V. Plotnikov - Ph.D. in Physical and Mathematical Sciences, Associate Professor of the Department of Higher
Mathematics

22/1, Bol'shevikov Ave., St. Petersburg, 193232, Russia



A. K. Chernykh
St. Petersburg Military Order of Zhukov Institute of National Guard Troops of the Russian Federation
Russian Federation

Andrey K. Chernykh - D.Sci., Ph.D. in Engineering, Associate Professor, Professor of the Department of Informatics and Mathematics

1, Letchika Pilyutova Str., St. Petersburg, 198206, Russia



References

1. Vertakova Yu.V., Kharchenko E.V., Zheleznyakov S.S. Integration of approaches to managing a modern organization. Kursk: Southwestern State University; 2010. 524 p. (In Russ.).

2. Makarov I.N., Morozova N.S., Moiseeva I.I. Financial stability of a company in a turbulent economy: Accounting and analytical issues. Izvestiya Sankt-Peterburgskogo gosudarstvennogo ekonomicheskogo universiteta. 2019;(3):39-44. (In Russ.).

3. Mil’gunova I.V., Vertakova Yu.V., Kolmykova T.S. Formation and assessment of competitive advantages of industrial enterprises. Kursk: Southwestern State University; 2012. 151 p. (In Russ.).

4. Muntyan N. Company bankruptcy: An overview of methodological approaches. Teoriya i praktika servisa: ekonomika, sotsial’naya sfera, tekhnologii. 2018;(4):37-39. (In Russ.).

5. Plotnikov V.A. Ensuring the competitiveness of Russian entrepreneurship. Ekonomika i upravlenie = Economics and Management. 2009;(10):23-26. (In Russ.).

6. Maksimtsev I.A., Miropol’skii D.Yu., Tarasevich L.S., eds. Eurasian political economy. St. Petersburg: St. Petersburg State University of Economics; 2016. 767 p. (In Russ.).

7. Plotnikov V.A. The concept of a mixed economy: Evolution of development and modern interpretation. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Ekonomika. Sotsiologiya. Menedzhment = Proceedings of South-West State University. Series Economics. Sociology. Management. 2018;8(2):8-16. (In Russ.).

8. Kharlamov A.V., Vunotropidi A.F. Improving state regulation of the national economy in the context of global instability. Izvestiya Sankt-Peterburgskogo gosudarstvennogo ekonomicheskogo universiteta. 2015;(3):47-51. (In Russ.).

9. Vasil’ev Yu.M., Fridman G.M. Mathematical modeling of the European gas market: An extended optimization model for predicting gas flows through a pipeline system. Izvestiya Sankt- Peterburgskogo gosudarstvennogo ekonomicheskogo universiteta. 2019;(3):15-24. (In Russ.).

10. Plotnikov P.V. Theoretical approaches to modeling economic phenomena and processes. In: Actual problems of the development of modern society. Proc. 4th Int. sci.-pract. conf. Kursk: Southwestern State University; 2014:297-301. (In Russ.)

11. Chernykh A.K., Vilkov V.B. On one approach to solving matrix games based on the theory of fuzzy sets and fuzzy logic. Zhurnal issledovanii po upravleniyu = Journal of Management Studies. 2019;5(3):38-51. (In Russ.).

12. Neuman J. von, Morgenstern O. Theory of games and economic behavior. Princeton: PUP Publ.; 1955. 641 p. (Russ. ed.: Neuman J. von, Morgenstern O. Teoriya igr i ekonomicheskoe povedenie. Moscow: Nauka; 1970. 707 p.).

13. Petrosyan L.A., Zenkevich N.A., Semina E.A. Game theory. Moscow: Vysshaya shkola; 1998. 304 p. (In Russ.).

14. Vilkov V.B., Flegontov A.V., Chernykh A.K. Mathematical model of the distribution problem under uncertainty. Differentsial’nye uravneniya i protsessy upravleniya = Differential Equations and Control Processes. 2018;(2):180-191. (In Russ.).

15. Vilkov V.B., Chernykh A.K., Flegontov A.V. Theory and practice of decision optimization based on fuzzy sets and fuzzy logic. St. Petersburg: Herzen State Pedagogical University of Russia; 2017. 160 p. (In Russ.).

16. Kaufmann A. Introduction à la théorie des sous-ensembles flous: A l’usage des ingénieurs (fuzzy sets theory): Applications à la linguistique à la logique et à la sémantique. Paris: Masson et Cie; 1973. 235 p. (Russ. ed.: Kaufmann A. Vvedenie v teoriyu nechetkikh mnozhestv. Moscow: Radio i svyaz’; 1982. 429 p.).

17. Pospelov D.A., ed. Fuzzy sets in management and artificial intelligence models. Moscow: Nauka; 1986. 312 p. (In Russ.).

18. Terano T., Asai K., Sugeno M., eds. Applied fuzzy systems. Transl. from Jap. Moscow: Mir; 1993. 368 p. (In Russ.).

19. Zadeh L.A. Fuzzy sets. Information and Control. 1965;8(3):338-353. DOI: 10.1016/S0019-9958(65)90241-X

20. Bellman R.E., Zadeh L.A. Decision-making in a fuzzy environment. Management Science. 1970;17(4):141-164. DOI: 10.1287/mnsc.17.4.B141

21. Borisov A.N., Krumberg O.A., Fedorov I.P. Making decisions based on fuzzy models. Examples of using. Riga: Zinatne; 1990. 184 p. (In Russ.).

22. Leonenkov A.V. Fuzzy modeling in MATLAB and fuzzy TECH. St, Petersburg: BHV-Peterburg; 2005. 736 p. (In Russ.).

23. Zadeh L.A. The concept of a linguistic variable and its application to approximate reasoning. Part 1. Information Sciences. 1975;8(3):199-249. Part 2. Information Sciences. 1975;8(4):301-357. Part 3. Information Sciences. 1975:9(1):43-80. (Russ. ed.: Zadeh L.A. Ponyatie lingvisticheskoi peremennoi i ego primenenie k prinyatiyu priblizhennykh reshenii. Moscow: Mir; 1976. 166 p.).

24. Shtovba S.D. An introduction to fuzzy set theory and fuzzy logic. Vinnytsia: Universum- Vinnytsia; 2001. 71 p. (In Russ.).

25. Abramov L.M., Kapustin V.F. Mathematical programming. Leningrad: Leningrad State University; 1981. 328 p. (In Russ.).

26. Plotnikov V.A., Seregin S.S. Management of market risks of enterprises’ activities based on the use of fuzzy logic methods. Ekonomika i upravlenie = Economics and Management. 2011;(3):79-82. (In Russ.).

27. Tarasov V.N., Bakhareva N.F. Mathematical programming. Theory, algorithms, programs. Samara: Gulf Stream; 2007. 222 p. (In Russ.).


Review

For citations:


Vilkov V.B., Plotnikov V.A., Plotnikov P.V., Chernykh A.K. A Methodological Approach to Identifying the Optimal Market Behavior Strategy Based on Fuzzy Game Modeling. Economics and Management. 2020;26(10):1148-1157. (In Russ.) https://doi.org/10.35854/1998-1627-2020-10-1148-1157

Views: 474


ISSN 1998-1627 (Print)